Modeling of electronic and phonon thermal conductivity of silicon in a wide temperature range

Author:

Koroleva O N,Demin M M,Mazhukin A V,Mazhukin V I

Abstract

Abstract In the present article, using the methods of mathematical modeling, the thermal conductivity of silicon was obtained in a wide temperature range (0.3 ≼ T ≼ 3 kK), including the region of semiconductor-metal phase transformations. As it is known, there are two mechanisms of heat transfer in a solid: elastic lattice vibrations and free electrons, therefore, in the study of the thermal conductivity of silicon, the lattice and electronic components were taken into account. The lattice (phonon) thermal conductivity in this work was determined within the framework of the atomistic approach. The Stillinger–Weber and Kumagai–Izumi–Hara–Sakai interaction potentials were used for modeling. The results of the comparison of the phonon thermal conductivity obtained from the simulation results with the used interaction potentials are presented. The modeling of the thermal conductivity of the electronic subsystem of silicon with intrinsic conductivity in this work is based on the use of the quantum statistics of the electron gas using the Fermi–Dirac integrals. The total thermal conductivity of silicon, obtained as the sum of the electronic and phonon components, is compared with the experimental data.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3