Thermalization of the plasma arising during counter collision of high-energy plasma flows in a longitudinal magnetic field

Author:

Gavrilov V V,Eskov A G,Zhitlukhin A M,Kochnev D M,Pikuz S A,Poznyak I M,Ryazantsev S N,Skobelev I Yu,Toporkov D A,Umrikhin N M

Abstract

Abstract This work is devoted to the study of thermalization of plasma created by head-on collisions of high-energy plasma flows in a longitudinal magnetic field of 0.5–2 T. Hydrodynamic flows contained the energy of 200 kJ with velocities from 2 × 107 to 4 × 107 cm/s and ion density from 2 × 1015 to 4 × 1015 cm−3 were created inside the 2MK-200 facility by two electrodynamic plasma accelerators equipped by a system of pulsed gas injection. Nitrogen, neon and their mixtures with hydrogen and deuterium were implemented as working gases. A process of plasma creating was investigated by near-wall magnetic probes situated in different parts of the interaction chamber. Temporal evolution of the plasma electron temperature had been traced by x-ray photodiodes covered by different filters. It was discovered that the plasma electron temperature changed insignificantly during 6–8 μs after it reached the maximum value, which means that it ionization state can be considered as quasi-stationary.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3