LFT Bond Graph for Online Robust Fault Detection and Isolation of Hybrid Multi-Source System

Author:

Boukerdja Mahdi,Radi Youness,Omprakash ,Sood Sumit,Ould-Bouamama Belkacem,Chouder Aissa,Gehin Anne-Lise,Dieulot Jean-Yves,Bressel Mathieu

Abstract

Abstract Green hydrogen is undoubtedly the most promising energy vector of the future because it is captured by renewable and inexhaustible sources, such as wind and/or solar energy, and can be stored over the long in high-pressure cylinders, which can be used to feed the fuel cells to produce the electricity without emitting any pollutants. The system incorporated renewable sources and process used to produce the green hydrogen is the hybrid multi-source system (HMS). The production of hydrogen needs a reliable HMS, which always requires online monitoring for real-time Fault Detection and Isolation (FDI) because the risk of accidents in HMS and safety issues increases due to the possibility of faults. However, online monitoring of FDI is challenging due to the multi-physics dynamics of HMS and the inclusion of uncertain parameters and several disturbances. This paper proposes an online robust fault detection algorithm to detect system faults based on the properties of the graphical linear fractional transformation bond graph (LFT-BG) modeling approach. Here, the analytical redundancy relations (ARRs) and their uncertain parts extracted from the LFT-BG model are used to develop an online robust FDI algorithm for HMS. Numerical evaluations of ARRs and their uncertain parts, respectively, generate the residual signals known as “faults indicators” and their uncertain bounds known as “adaptive thresholds.” These thresholds evolve with system variables in the presence of parameter uncertainties for ensuring robust FDI for HMS to minimize false alarms. The validation of this approach is carried out using 20sim software that is familiar with BG modeling.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-Based Single-Fault Disambiguation Using Temporal Information and Genetic Algorithm: A Case Study on Hydraulic Drive System;Arabian Journal for Science and Engineering;2024-01-26

2. A Comparison of Model-Based and Machine Learning Techniques for Fault Diagnosis;2022 23rd International Middle East Power Systems Conference (MEPCON);2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3