Dynamic Analysis of Tippe Top on Cylinder’s Inner Surface With and Without Friction based on Routh Reduction

Author:

Ariska M,Akhsan H,Muslim M

Abstract

Abstract Physics computing can be used to help to solve complex dynamic equations, both translation and rotation. The purpose of this study was to obtain differences in the dynamics of the tippe top with and without friction moving on inner surface of a cylindrical with varying initial state based of Routhian Reduction. The equation of tippe top in flat fields with and without friction has been reduced by the Routhian reduction method with the Poincare equation with computational in the previous research, and computation has also been carried out in the search for numerical solutions to the dynamics of tippe top with friction in the Maple program. In this study the reduction used is a Routhian reduction, so that the equation used in determining the equations of tippe top motion with and without friction that moves in a curved plane in the form of a cylindrical surface with varying initial state based on maple is Poincaré’s equation based on Routhian reduction with and without friction. The effect of friction can be seen clearly through the dynamics and graph equations in the return top. This method can reduce the equation of backward motion with and without friction that moves on the surface of the cylinder clearly in the form of a set of differential equations. This research can be continued by solving the dynamic equations of the tippe top in other curved fields such as the torus and ball. The findings of this study are dynamic equations and graphs of friction with and without friction equations that move in curved fields in the inner of surfaces in cylinders with varying initial state based on maple.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3