Sentiment Analysis using Recurrent Neural Network

Author:

Kurniasari Lilis,Setyanto Arif

Abstract

Abstract This study aims to measure the accuracy of the sentiment analysis classification model using deep learning and neural networks. This study used the algorithm Recurrent Neural Network (RNN) and Word2vec. No previous research has used this model to analyze sentiments written using Indonesian language so that the level of accuracy is unknown. The research began by making a classification model of sentiment analysis. Then, the model was tested through experiments. In this study, They used two classifications (positive and negative). Experiments are carried out using training data sets and the test used data sets sourced from Traveloka theybsite. The result shows that the model presents outstanding results and reaches about 91.9%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference22 articles.

1. Thumbs up? Sentiment Classification Using Machine Learning Techniques;Pang;Proceedings of the ACL-02 conference on Empirical methods in natural language processing - EMNLP’02,2002

2. Social media metrics and sentiment analysis to evaluate the effectiveness of social media posts;Poecze;Procedía Comput. Sci.,2018

3. Hybrid Approach for Emotion Classification of Audio Conversation Based on Text and Speech Mining;Bhaskar;Procedia Comput. Sci.,2015

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3