Implementation and quality measures of graph theory model based image segmentation process in medical application

Author:

Sekar U,Raj Mohan R,Subba Reddy MV

Abstract

Abstract This research work simplified the representation of an image into more significant and easier way to analyse the image segmentation process by applying graph theory using color spatial clustering with consensus region merging. The color spatial clustering with consensus region merging is compared with other traditional and graph theory model to analyse the various quality measures calculated for the input of magnetic resonance imaging (MRI) scan and X-Ray images which will be useful in medical imaging for better analysis during diagnosis. From quality measures, the proposed method shows good quality image parameters as it has lower MSE, NAE values.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. Various graphs and their applications in real world;Patel;International Journal of Engineering Research &Technology,2013

2. Experimental study on graph-basedimage segmentation methods in the classification of satellite images;Dezso,2012

3. Review of image segmentation technique;Anjna;J. Adv. Res. Comput.Sci,2016

4. Overview of segmentation X-Ray medical images using image processing technique;Mustafa;J. Phys.: Conf. Ser.,2020

5. Medical image segmentation;He;Adv.Mater. Res,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3