Open-circuit fault diagnosis method for inverters using deep learning and the evidence reasoning rule

Author:

Yu Hang,Gao Haibo,He Yelan,Lin Zhiguo,Xu Xiaobin,Pan Zhiqiang

Abstract

Abstract Inverters having high voltage levels, high power density, and high integration are widely used. However, many high-frequency switch units also increase the probability of failure. Therefore, developing an accurate and stable fault diagnosis method is necessary. This paper proposes a fault diagnosis algorithm based on deep learning and the evidence reasoning (ER) rule. It not only ensures high diagnostic accuracy, but also enhances the stability of the diagnostic results. The algorithm takes the three-phase voltage source inverter as the research object and extracts the three-phase current signals with different types of faults as features. First, Convolutional and Deep Neural Network methods were utilized independently to determine a preliminary diagnosis. Second, the softmax functions of the Convolutional and Deep Neural Network outputs provided the probability distribution of the fault category, which was used as the evidence body for the ER rule to construct the fusion diagnosis. In addition, a new method of determining the reliability and the importance factors of the evidence was proposed in which the evaluation index of the deep-learning diagnosis result was applied. Finally, the final classification result was obtained using the ER rule. The proposed method can effectively enhance the accuracy and robustness compared with a single classifier.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3