Stability of kaolin particles subjected to elevated temperatures using various dispersing agents

Author:

Shakrani S A,Ayob A,Ab Rahim M A,Alias S

Abstract

Abstract The stability of kaolin particles is largely influenced by nature and the behaviour of dispersing agents introduced to the system. This study analysed the size of kaolin particles subjected to elevated temperatures by using various dispersing agents such as ultrapure water (UPW), acetone (Ace) and sodium hydroxide (NaOH). It was found that kaolin particles in UPW formed a stable dispersion compared to particles in Ace and NaOH without further aggregation. Interestingly, kaolin particles under UPW, Ace, and NaOH dispersants had a strong affinity for water and can be classified as possessing hydrophilic behaviour. The mean size of kaolin particles was reduced under UPW and Ace dispersion but increased under NaOH suspension. Under UPW dispersion, kaolin particles ranged from 141.8nm to 5560nm, creating a mid-range monodisperse size distribution (0.08 < PDI < 0.7) without any presence of agglomeration due to high potential energy barrier and electrostatic repulsion. Kaolin particles subjected to NaOH dispersant produced a narrow distribution of particle sizes ranging from 295.3nm to 1106nm but appeared to agglomerate because of Van der Waals interactions. In contrast, the Ace dispersant produced a very broad polydisperse particle size distribution (PDI > 0.7) of greater than 10μm in kaolin with a little aggregation but lacking consistency in terms of stability. However, all dispersants contributed to the kaolin particles dispersion but UPW shown more stability dispersion due to increase in number of hydroxyl groups in dispersant molecule. In conclusion, this simple and low cost methodology can be useful in characterising kaolin particle sizes with limited resources.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3