Index group optimization based on automatic clustering using K-Means genetic algorithm

Author:

Multazam M T,Dijaya R,Devi N M S

Abstract

Abstract E-prints UMSIDA is a repository of student and lecturer publication documents at the Muhammadiyah University of Sidoarjo (UMSIDA). The collection of documents is still random and the search can only detect from the title keywords. The increasing culture of writing and research makes it possible for more and more documents as literature. Documents in E-prints are grouped by subject provided by the repository manager and grouped by the admin who uploaded the document. Automatic document grouping can be done by grouping documents based on the contents of the document using the Information Retrieval (IR) approach. The retrieval process is carried out by document processing with tokenisation to obtain data tokens, the data tokens are processed through a stemming process to obtain the stem value of each word. The stem value is processed using the indexing process and word stem to get sentence indexes through the weighting process. The index results stored in the database become document variables that are the features or characteristics of each document. The index of all documents is grouped through Automatic Clustering technique using K-Means Genetic Algorithm.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. Perpustakaan Digital Dalam Temu Kembali Informasi Dengan OPAC;Ernawati;JIPI (Jurnal Ilmu Perpust. dan Informasi),2018

2. Efficient Information Retrieval Using Document Clustering;Bansal;Internasional J. Adv. Res. Comput. Sci.,2010

3. Information Retrieval Models and Searching Methodologies: Survey;Saini;Int. J. Adv. Found. Res. Sci. Eng.,2014

4. Sistem Temu Kembali Informasi pada Dokumen Teks Menggunakan Metode Term Frequency Inverse Document Frequency (TF-IDF);Dhony Syafe’i Harjanto;J. Sains dan Mat.,2012

5. Survey: Finite-state technology in natural language processing;Maletti,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3