Lung radiotherapy verification with a 3D printed thorax phantom and an ionisation chamber array

Author:

Kairn T.,Jessen L.,Bodnar J.,Charles P. H.,Crowe S.B.

Abstract

Abstract In this study, a 3D printing error inspired the development of a novel method for using a sagittally-sliced 3D printed thorax phantom to perform dosimetric verifications of lung radiotherapy treatment methods using a 2D ionization chamber array. A full-size thorax model was designed for 3D printing with multiple tissue densities including lung and bone and printed as a series of 2.4 cm sagittal slices using a Raise 3D Pro dual nozzle printer (Raise 3D Technologies Inc, Irvine, USA). An error introduced midway through printing resulted in one half of the phantom being printed at unrealistically high densities. A method was therefore devised whereby the entire phantom was used to plan two lung treatments, one conventionally fractionated and one hypo-fractionated, which were then verified via measurements using an Octavius 729 ionisation chamber array (PTW-Freiburg GmbH, Freiburg, Germany) in combination with several correctly-printed slices of the phantom. The measurements allowed dose distributions in planes through the target, adjacent to the target and at the location key of organs at risk to be verified, for both treatment plans. This method has the potential to be adapted for use with other phantoms and other dosimetry arrays to allow efficient evaluation of future treatment techniques.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3