Semiconductor quantum well based shutters for NIR laser mode-locking with ∼ GHz repetition rate

Author:

Rubtsova N N,Kovalyov A A,Ledovskikh D V,Preobrazhenskii V V,Putyato M A,Semyagin B R,Kuznetsov S A,Pivtsov V S

Abstract

Abstract Fast semiconductor shutters based on coupled wells were designed in the search for reliable, compact and cheap key element of GHz repetition rate NIR lasers passive mode-locking. Stable 0.98 GHz repetition rate 200-fs Yb:KYW laser pulses were demonstrated for SESAM including semiconductor reflector and a layer of quantum wells. The damage threshold estimate for the SESAM is ∼ 8.87 mJ/cm2. Other type of shutter – DSAM – was developed with dielectric reflector and the layer of quantum wells transferred over reflector. The measured recovery time was about 2-3 ps for both types of saturable absorbers. The efficiency relative to the incident pump power was 57% for the SESAM and 19% for the DSAM. Average output power of 2.54 W for the all-semiconductor shutter (SESAM) and of 0.92 W for the dielectric mirror with a saturable absorber (DSAM) were obtained. Actual state of the art for the shutters design is considered.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3