Development of an early design tool for the sustainability assessment of positive energy districts: methodology, implementation and case-studies

Author:

Brunetti A,Cellura S,Guarino F,Longo S,Mistretta M,Reda F,Rincione R

Abstract

Abstract The concept of Positive Energy District is one of the research ideas that embody the ambitions of decarbonization, renovation (both literal and in a wider perspective) and inclusivity for the urban environment portrayed in the EU activities. In this framework, the paper presents a modeling and simulation tool which allows for an early-design depth to be applied in the field of Positive Energy Districts renovation design and integrated performance assessment. The work aims at creating a tool for stakeholders and designers that would allow them to: a) Calculate carbon impacts along the life cycle for different technical systems and materials used for retrofitting; b) Compute use stage carbon emissions, including import-export of electricity; c) Computations of PED carbon emission balances, along the expected useful life of the district computing both embodied and the use stage carbon emissions. The tool has been created as a spreadsheet including typical profiles of energy use per building archetype, with the inclusion of available and free Life Cycle Assessment data within the life cycle carbon assessment and aims at jointly developing use stage and life cycle considerations. It was tested on a district case studies in the EU.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3