Heat vulnerability digital mapping at neighbourhood level in the compact city

Author:

Morganti M,Lopez-Ordoñez C,Ciardiello A

Abstract

Abstract This paper analyses the impact of urban form and vegetation on one of the most significant parameters that affect people’s thermal comfort and an indicator of urban heat vulnerability: the mean radiant temperature (MRT). To obtain spatialized results and understand in detail the current thermal situation of different public spaces that are part of the city, we combined the SOLWEIG calculation model included in the UMEP tool for QGIS with Urban Weather Generator for Rhino. Six neighbourhoods of Rome (IT) and the associated areas with typical compact urban forms, ranging from historical centre to modern suburbs, have been analysed in the warmest week of the year (August 03-09) during the most critical hours of the day (10 a.m. - 4 p.m.). Georeferenced maps with the mean values of MRT for the studied period allow us to analyse the thermal behaviour of each public square and neighbourhood and locate possible urban havens during heatwaves. This study is part of a larger work that seeks to define a more accurate approach to quantify heat vulnerability within the urban vulnerability indexes, in light of the climate crisis facing cities.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference18 articles.

1. A raster-based subdividing indicator to map urban heat vulnerability: A case study in sydney, australia;Zhang;Int. J. Environ. Res. Public Health,2018

2. Construction of a composite vulnerability index to map peripheralization risk in urban and metropolitan areas;Gerundo;Sustain,2020

3. Perspectives on spatial representation of urban heat vulnerability;Karanja;Sci. Total Environ.,2021

4. Urban and social vulnerability assessment in the built environment: An interdisciplinary index-methodology towards feasible planning and policy-making under a crisis context;Mercader-Moyano;Sustain. Cities Soc.,2021

5. Urban Heat Island vulnerability mapping using advanced GIS data and tools;Sidiqui;J. Earth Syst. Sci.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3