Very high energy sky monitoring with the Southern Wide-field Gamma-ray Observatory

Author:

La Mura G,Barres de Almeida U,Longo F

Abstract

Abstract The Southern Wide-field Gamma-ray Observatory (SWGO) is the proposal for a new ground-based γ-ray instrument in the Southern Hemisphere, which will use an array of water-Cherenkov based particle detectors to provide continuous monitoring and regular scanning of a large portion of the sky at the very- and ultra-high-energies (VHE and UHE, respectively). At the low energy side, SWGO aims to push the observational range of wide-field ground-based γ-ray facilities down to a few hundred GeV, thus bridging the gap between space and ground-based facilities in the monitoring of the VHE sky. In the high energy domain, on the contrary, it will benefit from the optimal coverage of the Galactic Plane to map the distribution of UHE sources in the inner parts of the Galactic disk and close to the Galactic Center, leading to an extraordinary improvement in our ability to identify their most likely counterparts. In this contribution, we describe the concept of SWGO and its potential to constrain the physics of VHE emission and particle acceleration in γ-ray sources powered by relativistic jets and energetic shocks. We finally discuss its role within the global network of multi-messenger facilities.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prospects for the detection of very-high-energy pulsars with LHAASO and SWGO;Monthly Notices of the Royal Astronomical Society;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3