Thermal, Metallurgical and Mechanical Determinants of Laminar Nickel/Aluminum Dissimilar Alloys during Laser-material Interaction Part I: Nickel-based Superalloy

Author:

Gao Zhiguo

Abstract

To develop in-depth understanding of metallurgical phenomena for completeness, mechanical heterogeneity is kinetically and thermodynamically explained by thorough microstructure characterization of engineering materials, e.g. polycrystalline nickel-based superalloy, for alleviation of weldability-related problems during laser-induced keyhole fabrication. Because of nonequilibrium solidification behavior inside weld pool, finer γ phase dendrite substructure is confined to partition-resistant keyhole bottom part, coarser dendrite is crystallography-independently circumscribed at partition-vulnerable neck transition region of full penetration weld, and thus microstructure is lack of homogeneity. Abundance of segregation-driven eutectic phase or intermetallic phase in the interdendrite area throughout weld is essentially attributable to nonequilibrium solidification conditions, and morphologically increases susceptibility to mechanical properties deterioration. As a result of γ phase instability, Niobium-aided Laves/γ eutectic reaction in the vicinity of dendrite interstices at terminal stage of solidification contributes to severe dendrite boundaries brittleness, impairs mechanical properties, which is consistent with metallography and fractography results, and is more deleterious to weldability, since solute redistribution and supersaturation adversely exacerbate segregation behavior in the residual interdendrite liquid, especially asymmetric weld pool shape. There is inverse parabolic relationship between secondary dendrite arm spacing and solute partition coefficient, when location varies from nail-shaped weld upper site to bottom site. Chemical, microstructural and mechanical heterogeneities are more geometrically favorable in the curvature-related neck transition region. In addition, the mechanism of thermal, metallurgical and mechanical inhomogeneities, which are attributed to asymmetric weld pool shape, is consequently proposed. Untoward metallurgical phenomena, such as microstructure heterogeneity and brittle Niobium-rich Laves/γ eutectic phases mitigate strength, ductility and toughness of weld. In order to macroscopically and microscopically satisfy superior mechanical properties requirement, chemistry and microstructure of high quality weld are metallurgically controlled. Fruitful metallurgical information and mechanical data further support the reasonable explanations. It is imperative to progressively advance welding metallurgy, weldability and fabricability of intricate shape for welding defects minimization, suppress segregation and further develop mechanical properties through viable design and control of laser processing, simultaneously.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3