Unsupervised Kernel-Induced Fuzzy Possibilistic C-Means Technique in Investigating Real-World Data

Author:

Devi R

Abstract

Abstract The goal of this study is to break down a large dataset into meaningful groupings. Due to the vast dimension and significant resemblance seen among data, exploring divided clusters in real-world datasets is the most difficult assignment. As a result, this work proposes a fuzzy set-based unsupervised effective clustering technique that includes possibilistic memberships, and fuzzy membership degrees into the membership, weighted Cauchy kernel-based similarity measure and center equations. The empirical findings demonstrate the feasibility of the proposed effective clustering technique.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. CSFCM: An improved fuzzy C-Means image segmentation algorithm using a cooperative approach;Hamza;Expert Systems with Applications,2021

2. A Comprehensive Study on the Importance of the Elbow and the Silhouette Metrics in Cluster Count Prediction for Partition Cluster Models;Abdulnassar;Revista GEINTEC,2021

3. Adaptive weights clustering of research papers;Adamyan;Digit Finance,2020

4. Comparison Of K- Means and Fuzzy C- Means Algorithms;Singh;International Journal of Engineering Research & Technology,2013

5. A Comparative Study of Clustering Algorithm for Lung Cancer Data;Krishnamoorthy;International Journal of Scientific & Engineering Research,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3