Image Processing and Luminescent Probes for Bioimaging Techniques with High Spatial Resolution and High Sensitivity

Author:

Ge Zizheng,Liu Wentao

Abstract

Abstract The balance of microenvironmental factors (including temperature, pH, ROS species, etc.) plays a crucial role in maintaining normal living organisms’ normal physiological activities and physiological functions. Therefore, armed with the unique superiorities of high spatial resolution, non-invasion, high sensitivity, real-time monitoring, and simple operation, luminescent imaging technology has been widely used in real-time and accurate monitoring of microenvironmental factors in these organisms to prevent, diagnose and treat related diseases in time. However, due to its optical imaging characteristics, it is also faced with such interference factors as relatively shallow imaging penetration depth, background fluorescence (biological autofluorescence) interference in a complex environment, uncertain probe concentration, and unstable laser power in the imaging process, which are not related to the analyte. As for the problems in imaging, such as the uncertainty of probe concentration and the fluctuation of instrument laser power, the ratio detection, and imaging technology with self-calibration function can effectively avoid these problems. As for background fluorescence interference in imaging, probes with long-life emission can be used in imaging. The long-life luminescence of probes from background fluorescence can be recognized by time-resolved luminescence imaging technology to reduce its impact. This paper briefly introduces and summarizes the relative research of ratio detection and imaging technology and time-resolved luminescence imaging technology.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference77 articles.

1. Imaging in the era of molecular oncology;Pittet;Nature,2008

2. Terbium (iii) Luminescent Complexes as Scale Viscosity Probes for Lifetime Imaging (vol 139, pg 7693, 2017);Anh Thy;J. Am. Chem. Soc.,2018

3. New approaches for imaging tumour responses to treatment;Brindle;Nat. Rev. Cancer,2008

4. High-resolution non-destructive three-dimensional imaging of integrated circuits;Holler;Nature,2017

5. Plasmonic-Based Electrochemical Impedance Imaging of Electrical Activities in Single Cells;Liu;Angew. Chem. Int. Ed,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3