Molecular dynamics simulation to enhance the mechanical and tribological properties of polyimide composites by graphene reinforcement

Author:

Chen Zhe,Li Aijiao,Liu Hong

Abstract

Abstract Background: Polyimide is one of the organic polymer materials with the best comprehensive performance. It has outstanding mechanical properties, excellent thermal stability and excellent corrosion resistance, but pure polyimide has high coefficient of friction and wear rate. By combining graphene with polyimide, the mechanical properties of the composite are significantly reformatived, and the friction coefficient and wear rate can be reduced. Objective: The molecular models were developed to study the mechanical and tribological properties of graphene as a reinforced material. Methods: In this paper, the mechanical properties and friction and wear mechanism of materials are studied by molecular dynamics method from the microscopic point of view. The Young’s modulus and hardness of composites were calculated using the strain constant method. Results: Molecular dynamics simulation results expressed that the Young’s modulus and hardness of polymer composites benefited by approximately 115% and 42%, respectively, after the addition of the graphene-reinforced material. The average friction coefficient and wear rate of polymer composites fall by 35% and 48%, respectively. Through the calculation and statistics of the micro-information in the process of friction simulation, the internal mechanism of various situations is revealed in the atomic dimension. Conclusions: Graphene can adsorb on the surface of polymer chain segment, a strong polymer matrix, through van der Waals and electrostatic forces and can effectively resist external loading.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference9 articles.

1. Polymers in tribology: challenges and opportunities;Baets,2014

2. Prospects for Carbon Fibres;Jeffries,1971

3. The structure of suspended graphene sheets;Meyer,2007

4. Moving towards a graphene world;Van Noorden,2006

5. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene;Pei,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3