Comprehensive detection device and physical testing for mechanical properties of seabed sediments and shallow gas

Author:

Li Zhe Yun,Li Qing

Abstract

Abstract In this paper, a comprehensive detection device for the mechanical properties of seabed sediments and shallow gas is designed, which is mainly composed of the seabed sediment mechanical properties detection part, the shallow gas detection part and the ultrasonic wireless transmission part. The mud water gas separation structure of the shallow gas detection part separates the shallow gas from the mud water, and then the methane concentration in the shallow gas is measured by the non-dispersive infrared methane sensor, which realizes the collection of the submarine shallow gas and the automatic real-time monitoring of the concentration. The measurement of the mechanical properties of seabed sediments realizes the real-time measurement of the three parameters of cone resistance, sidewall friction and pore water pressure, which characterize the mechanical properties of seabed sediments, through strain-sensitive elements. The ultrasonic wireless data transmission part is mainly for the data detected by the mechanical properties of the seabed sediments to be wirelessly transmitted to the sensor placement room through the ultrasonic transducer across the mud-water-gas separation structure. Finally, the data measured by the two parts are transmitted to the mother ship through the cable located in the sensor placement room. The experimental results show that it has the ability to comprehensively detect the mechanical properties of seabed sediments and shallow gas, and has strong operability.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Distribution characteristics of shallow gas in the offshore seabed of China [J];Li;Chinese Journal of Geological Hazard and Control,2010

2. Prediction and Control Technology of Shallow Geological Hazards in Deep Waters of Ocean [J];Bo;Journal of Marine Geology,2012

3. Study on tin oxide methane sensor [J];Jiabao;Chinese Journal of Sensors and Actuators,2001

4. Application of thermal catalysis principle in methane concentration monitoring system in coal mine [J];Dalu;Science and technology innovation guide,2010

5. Research progress and existing problems of mine methane sensor [J];Wu;Energy technology and management,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3