Author:
Bartosiewicz K,Kurosawa S,Yamaji A,Zorenko Y,Yoshikawa A
Abstract
Abstract
The luminescence characteristics of Gd3Al2Ga3O12:Ce3+ garnet scintillator crystals codoped with Li+ and Mg2+ ions were investigated. The excitation and emission spectra were obtained within the energy range of 3.6-21.6 eV, at both liquid helium and room temperature conditions to examine the effects of Li+ and Mg2+ codoping on cerium valence states, gadolinium-cerium energy transfer, and defect formation. Codoping with Mg2+ was found to efficiently convert Ce3+ to Ce4+, evidenced by significant changes in the shapes of the excitation spectra profile for Ce3+ luminescence in the exciton range, while Li+ had little impact. The presence of the high concentration of Ce4+ ions hampered the Gd3+→Ce4+ energy transfer. Redshifts in Ce3+ emission peaks indicated codopant-induced perturbations to the crystal field environment. The significant changes in the location of the Ce3+ excitation bands of Ce3+ luminescence in the exciton range further suggested alterations in the elemental distributions by the creation of complex defect clusters, particularly with Mg2+ codoping. The results demonstrate that Li+ and Mg2+ uniquely impact cerium valence, energy transfer processes, and structural properties in GAGG:Ce crystals.
Reference21 articles.
1. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection;Nikl;Adv. Opt. Mater.,2015
2. Progress in discovery and structural design of color conversion phosphors for LEDs;Xia;Prog. Mater. Sci.,2016
3. Elemental fluctuation in Gd3Al2Ga3O12:Ce crystals imposed by Li+ and Mg2+ co-doping: The impact on defects, luminescence, and scintillation properties;Bartosiewicz;Metals (Basel),2023
4. Towards deliberate design of persistent phosphors: a study of La–Ga admixing in LuAG:Ce crystals to engineer elemental homogeneity and carrier trap depths;Bartosiewicz;J. Mater. Chem. C Mater. Opt. Electron. Devices,2023
5. Energy-transfer processes in nonstoichiometric and stoichiometric Er3+, Ho3+, Nd3+, Pr3+, and Cr3+ -codoped Ce+:YAG transparent ceramics: Toward high-power and warm-white laser diodes and LEDs;Bartosiewicz;Phys. Rev. Appl.,2023