Entropic model of network dynamics of clocking network synchronization

Author:

Kanaev A K,Oparin E V,Oparina E V

Abstract

Abstract The main task of the clocking network synchronization (CNS) network subsystem is the formation, transmission, distribution and delivery of synchronization signals to the telecommunication system (TCS) digital equipment for the purpose of its coordinated interaction. Indicators of the telecommunication services quality are inextricably linked with the indicators of the CNS network functioning quality, in this regard, the process of monitoring and managing the CNS network comes to the fore for the purpose of prompt detection of failures and their subsequent elimination. The article provides an overview of the main classes of CNS network equipment and their diagnostic parameters, and also indicates the significant influence of the CNS network functioning process on the entire TCS functioning. To assess the technical condition of the CNS network an approach using the entropy analysis of the diagnostic parameters of the CNS network elements is proposed. The entropy model of the network dynamics is obtained in CNS work, which can later be used to develop a methodology for monitoring the technical condition of the CNS network. Using this model, it is possible to estimate not only the differential entropy of each CNS network element, but also to estimate the differential entropy of the entire CNS network or a separate fragment of the CNS network. Differential entropy parameters reflect the technical state of the CNS network.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3