The simplified approach to numerical modeling of polyurethane foam shock absorbers of complex structure: determination of effective mechanical properties and preparation of mathematical models of a homogenized material

Author:

Semenov A,Smirnov A,Stepanov M,Kharaldin N,Borovkov A

Abstract

Abstract The first part of this paper is devoted to modeling foam taking into account the effect of strain rate on material behavior in the LS-Dyna software package for solving dynamic problems in a wide range of speeds. The MAT_083 material model was used, which analyzes the stress-strain state considering the dependence on the strain rate. The process of adaptation of experimental data for use in the MAT_083 material model is described. The second part of this study touches upon the homogenization of the properties of a shock absorber consisting of SKU-PFL-100 polyurethane (the modeling approach is described in the previous article) and polyurethane foam, the model of which is described in the first part of this paper. Homogenization of the shock absorber is carried out in order to reduce the number of elements in the problem and, accordingly, to improve the calculation performance. The stress-strain curves obtained during the compression of a shock absorber are used in the material MAT_083.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. A constitutive model for polyurethane foam with strain rate sensitivity;Jeong;Journal of Mechanical Science and Technology,2012

2. Dynamics Models of Synchronized Piecewise Linear Discrete Chaotic Systems of High Order;Sokolov;Symmetry,2019

3. Viscous Hyperelastic Materials Modeling;Semenov;International Journal of Mechanical and Production Engineering Research and Development (IJMPERD),2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Filled Polyurethane Foam with Improved Quality Indicators;Lecture Notes in Civil Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3