Author:
Sakharova A,Maslennikova L
Abstract
Abstract
Today, the total scientific classification of solid industrial waste is absent because of their diversity. The task of universal of mineral technogenic waste recycling is complicated by the difference in their composition. The nature of the chemical elements that make up building materials is always taken into account to predict their properties. In this regard, the purpose of the study was to determine the classification characteristics of mineral technogenic waste recycling on the basis of natural-scientific ideas about the electronic structure of the atom. Studies were conducted on model systems with ceramic oxides entering s-, p-, d- elements in ceramic matrix to test the impact of the electronic structure of the mineral waste cation on operational characteristics of building materials. The experimental results showed that the strength of the samples changes in the series s → p → d of the belonging of the introduced oxide cation to the electronic family. Additionally, such an indicator as the energy-gap width was used to study the nature of the contacting solid phases. It is possible to identify which substances in technogenic raw materials have the greatest effect on the performance of the material in value of the energy-gap width.
Subject
General Physics and Astronomy