Experimental Study on Local Heat Transfer during Quenching Process by Slot Nozzles

Author:

Jiang Peng,Wu Licheng

Abstract

Abstract Quenching is widely used in industrial applications. The heat is transferred from the ingots by spray or jet cooling at the secondary cooling zone. In this research work, the effort is focused on the influence of jet inclination on heat transfer in the boiling process, as well as the influence of heat transfer rate by changing the jet velocity through experimental work using Nicrofer sample under 850 ˚C. Different angles of the jet (25°, 45°, 65°, 90°) and flow velocities (3.5 m/s, 4.8 m/s, 7.8 m/s, 12.0 m/s) were arranged in these experiments respectively. The results indicated that due to the strong cooling effect of jet quenching the Leidenfrost point was not captured. Both the jet angle and jet velocity played important roles in promoting the cooling process. The smaller the jet angle, the faster the quenching rate. The angle of 25° presented the most optimum cooling effect. The higher the jet velocity, the shorter the cooling time. For the maximum jet velocity in this experiment v=12.0m/s, DNB-temperature even was not identified.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3