Wind Power Short-Term Forecasting Based on LSTM Neural Network With Dragonfly Algorithm

Author:

Liu Hui,Chen Dihuang,Lin Fang,Wan Zhouli

Abstract

Abstract The volatility and randomness of wind energy limit its large-scale usage in power systems. Accurate short-term wind power prediction can provide effective criteria for wind energy parallel in the grid and provide favorable conditions for the commercial utilization of wind energy. Therefore, the paper proposes a short-term wind power prediction model based on the dragonfly algorithm optimize long-term and short-term neural networks. Firstly, the model preprocesses the collected data and divides the data into a training set and a testing set. Then, the DA used the training set to optimize the relevant hyperparameters in the long and short-term memory neural network. Finally, the DA-LSTM prediction model constructed with excellent hyperparameters will use the test set to obtain the prediction results. The simulation results of the examples show that, compared with the GWO-BP, ELM, and LSTM models, the DA-LSTM model can effectively use time series data for short-term forecasting of wind power and has higher prediction accuracy.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. Exploiting deep learning for wind power forecasting based on big data analytics;Mujeeb;J. Applied Sciences,2019

2. A wind power time series modeling method based on the improved Markov Chain Monte Carlo Method;Zhu;J. Transactions of China Electrotechnical Society,2020

3. Forecasting short-term wind speed based on IEWT-LSSVM model optimized by bird swarm algorithm;Xiang;J. IEEE Access,2019

4. Wind power forecasting based on echo state networks and long short-term memory;López;J. Energies,2018

5. LSTM-EFG for wind power forecasting based on sequential correlation features;Yu;J. Future Generation Computer Systems,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3