Lumped parameters multi-fidelity digital twins for prognostics of electromechanical actuators

Author:

Quattrocchi Gaetano,Dalla Vedova Matteo D.L.,Berri Pier Carlo

Abstract

Abstract The growing affirmation of on-board systems based on all-electric secondary power sources is causing a progressive diffusion of electromechanical actuators (EMA) in aerospace applications. As a result, novel prognostic and diagnostic approaches are becoming a critical tool for detecting fault propagation early, preventing EMA performance deterioration, and ensuring acceptable levels of safety and reliability of the system. These approaches often require the development of various types of multiple numerical models capable of simulating the performance of the EMA with different levels of fidelity. In previous publications, the authors already proposed a high-fidelity multi-domain numerical model (HF), capable of accounting for a wide range of physical phenomena and progressive failures in the EMA, and a low-fidelity digital twin (LF). The LF is directly derived from the HF one by reducing the system degrees of freedom, simplifying the EMA control logic, eliminating the static inverter model and the three-phase commutation logic. In this work, the authors propose a new EMA digital twin, called Enhanced Low Fidelity (ELF), that, while still belonging to the simplified types, has particular characteristics that place it at an intermediate level of detail and accuracy between the HF and LF models. While maintaining a low computational cost, the ELF model keeps the original architecture of the three-phase motor and the multidomain approach typical of HF. The comparison of the preliminary results shows a satisfactory consistency between the experimental equipment and the numerical models.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference9 articles.

1. Review on electro hydrostatic actuator for flight control;Alle;International Journal of Fluid Power,2016

2. The more electric aircraft: Technology and challenges;Wheeler;IEEE Electrification Magazine,2014

3. A review of techniques to mitigate jamming in electromechanical actuators for safety critical applications;Hussain;International Journal of Prognostics and Health Management,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3