Preliminary tests on additive-manufactured Al-Sc specimens for the setup of a numerical model for Laser Shock Peening

Author:

Zavatta Nicola,Troiani Enrico

Abstract

Abstract Aluminum-Scandium alloys offer a great potential in aerospace applications due their high corrosion resistance and improved strength properties. Furthermore, these alloys have been qualified for laser additive manufacturing (AM), producing parts with static strengths rivalling their conventionally manufactured counterparts. However, laser processing also results in large residual stresses that can severely affect fatigue properties and result in geometric distortion. A proven method for reducing the fatigue-related problems in metallic structures is to drive compressive residual stresses into the affected area by means of Laser Shock Peening (LSP). This surface treatment is very effective in bulk structures, improving life performances of fatigue-sensitive aeronautical components, such as jet engines turbine blades or helicopter gearboxes. On the other hand, quite a limited number of studies has been presented on the effect of LSP on fatigue crack growth in thin components and laser AM structures. This work presents first the results of preliminary tensile tests on additive manufactured Al-Sc specimens. The tensile strengths of as-built and heat-treated samples are compared. Then, a reliable and computationally time-effective numerical model of laser peening is reviewed, referring to case studies investigated earlier. In view of applying LSP to additive manufactured Al-Sc components, the effects of different laser parameters and geometries are discussed. Finally, the possible drawbacks of the LSP treatment are addressed, in order to exploit its full potential in increasing the fatigue life of AM components.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3