Novel active control technique of aircraft flaps asymmetry

Author:

Baldo L,Cejudo Ruiz J. M.,Dalla Vedova M D L

Abstract

Abstract This paper proposes an active monitoring strategy to control aircraft trailing-edge high-lift devices (flaps) asymmetry. A variety of system failures can cause asymmetry in the control surfaces, including the transmission torsion bar break down and control surface actuator wear and tear. The authors’ novel asymmetry active monitoring approach detects and identifies flaps position asymmetry. Once the failure side has been identified, the active control activates the wingtip brakes to stop the uncontrolled flap surface. The still controlled flaps are driven to the damaged surface braking point to reduce flap asymmetry. As a result, the undesired aircraft roll moment (due to flaps asymmetry) will be controlled, and the aircraft maneuverability after failure will be (partially) restored. The proposed asymmetry active monitoring technique has been widely tested in different operational and failure conditions, using wear-free or worn-out actuators and considering every failure side scenario. The behavior of the proposed active model is evaluated in terms of time response and stability margin under certain operating conditions.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3