Prognostics of aerospace electromechanical actuators: comparison between model-based metaheuristic methods

Author:

Baldo L,Dalla Vedova M D L,Querques I,Maggiore P

Abstract

Abstract Electro-Mechanical Actuators (EMAs) deployment as aircraft flight control actuators is an imperative step towards more electric concepts, which propose an increased electrification in aircraft subsystems at the expense of the hydraulic system. Despite the strong benefits linked to EMAs adoption, their deployment is slowed down due to the lack of statistical data and analyses concerning their often-critical failure modes. Prognostics and Health Management (PHM) techniques can support their adoption in safety critical domains. A very promising approach involves the development of model-driven prognostics methodologies based on metaheuristic bio-inspired algorithms. Evolutionary (Differential Evolution (DE)) and swarm intelligence (particle swarm (PSO), grey wolf (GWO)) methods are approached for PMSM based EMAs. Furthermore, two models were developed: a reference, high fidelity model and a monitoring, low fidelity counterpart. Several failure modes have implemented: dry friction, backlash, short circuit, eccentricity and proportional gain. The results show that these algorithms could be employed in pre-flight checks or during the flight at specific time intervals. Therefore, EMA actual state can be assessed and PHM strategies can provide technicians with the right information to monitor the system and to plan and act accordingly (e.g. estimating components Remaining Useful Life (RUL)), thus enhancing the system availability, reliability and safety.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference33 articles.

1. Towards a methodology for new technologies assessment in aircraft operating cost;Vercella;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2021

2. Computational framework for real-time diagnostics and prognostics of aircraft actuation systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3