Using biochar to control nitric oxide air pollution

Author:

Mohamed Ghada Osama,Saleh Maher Elsayed,Shalaby Elsayed Ahmed,Elsafty Ahmed Samir

Abstract

Abstract This study deals with the ability of Rice Husk Biochar (RHB) to adsorb and reduce the concentration of 90 ppm Nitric Oxide (NO) gas which passed through it with a 1.2 liter/min flow rate within 8 minutes. The characteristics of biochar before and after adsorption were studied by SEM, EDAX, and FTIR analyses. To study the effect of different factors on adsorption the effect of manufacturing temperatures of biochar was studied by using two degrees 450 °C and 500 °C. It has also been measured the effect of biochar particles size using two types of size, coarse (C) and fine (F). The effect of the shape of the measurement system on the adsorption was also measured using two types of systems A and B. In general, the RHB450C A gives the best adsorption capacity for NO (95.7 mg/g) followed by RHB450F A (41.9 mg/g) followed by RHB500C A (24.8 mg/g). Both Langmuir and Freundlich isothermal models were applied to mathematical modelling of NO adsorption, and based on the coefficient of determination (r2) Langmuir’s model provided a perfect fit to the experimental data. It was also found that the pseudo-first-order model is suitable for studying adsorption kinetics.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference49 articles.

1. Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO2 and NO Process study;Sumathi;Chemical Engineering Journal,2010

2. Low-temperature flue gas denitration with transition metal oxides supported on biomass char;Yang;Journal of the Energy Institute,2019

3. Adsorption site, orientation and alignment of NO adsorbed on Au (100) using 3D-velocity map imaging, X-ray photoelectron spectroscopy and density functional theory;Abujarada;Physical Chemistry Chemical Physics,2019

4. Experimental study on adsorption and oxidation of activated carbon fiber to NO at low temperature;Zhang;Electric Power Environmental Protection,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3