Experimental Study on Effect of Water Depth on Earthquake Response of a Deep-water Cable-stayed Bridge Tower

Author:

Li Songlin,Geng Bo,Leng Siyuan,Deng Yasi,Liu Yangqing

Abstract

Abstract With the aim of investigating the effect of water depth on the earthquake response of a deep-water cable-stayed bridge tower, this study designed and manufactured a large-scale bridge tower model, taking a cable-stayed bridge across a deep reservoir of a hydropower station as a reference. Under the boundary conditions similar to the reference, shaking table tests were conducted to reflect the structural response of the bridge tower under white noise and earthquake actions at different water depths. The time history curve of the bridge tower’s structural response was recorded and used to investigate the variations in the natural frequency, displacement, stress and strain of a deep-water cable-stayed bridge tower at different water depths under earthquake actions. The results showed that the natural frequency of the bridge tower decreased almost linearly with the increase in the water depth. The displacement at the tower top increased gradually with the increase in the water depth under earthquake actions. In addition, the stress and strain at the tower bottom increased almost linearly in the transverse direction and nonlinearly in the longitudinal direction with the increase in the water depth.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference15 articles.

1. Advances in earthquake resisting systems for long-span bridges;Guan;Sciential Sinica Technologica,2021

2. Centrifuge modeling and numerical study on seismic response of deep-water bridge pier;Liang,2017

3. Shaking table tests on a deep-water high-pier whole bridge under joint earthquake, wave and current action;Yun;Applied Ocean Research,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3