Design of topic Web crawler based on improved PageRank algorithm

Author:

Yu Linxuan,Li Yeli,Zeng Qingtao

Abstract

Abstract With the continuous development of network information technology, the network is filled with a large number of all kinds of unstructured data called big data. However, this data is not easily stored in a local database. People realize that it is essential to get useful information from the Internet efficiently. The effort to gather information by human hands has led to the emergence of web crawler technology. However, the existing search engines still have shortcomings in topic similarity judgment and web page sorting algorithm. Therefore, this paper applies PageRank algorithm to topic crawler, constructs a vertical search engine, and introduces topic relevance factor to suppress "topic drift" according to the shortcomings of PageRank algorithm.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference8 articles.

1. Statistical Report on Internet Development in China (the Fourth)[R],2017

2. Learnable topic-specific web crawler;Rungsawang;Journal of Network&Computer Applications,2005

3. In-depth analysis of the key principles of Web topic crawler [J];Fang;Microcomputer Applications,2011

4. A method for Extracting Chinese terms based on statistical Techniques [J];Jian;Chinese Journal of Science and Technology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3