Possibility assessment for production of non-traditional nuclear fuel in thorium blanket of hybrid thermonuclear reactor

Author:

Kulikov G G,Shmelev A N,Kruglikov A E,Apse V A,Kulikov E G

Abstract

Abstract The paper aims at studying specific peculiarities in isotope composition of thorium blanket under irradiation by fusion neutron source (FNS) in hybrid thermonuclear reactor (HTR). High-energy (14 MeV) component of neutron spectrum in thorium HTR blanket results in production of non-traditional fissile mixture including not only233U, but also231Pa232U and 234U. Extraction of such non-traditional fuel from spent Th-blanket and its utilization in traditional nuclear power reactors could increase fuel burn-up and strengthen regime of nuclear non-proliferation. The detailed investigations of these positive effects require high-precision neutron-physical analyses of thorium HTR blanket. The results obtained in these investigations are presented in the paper. The following results were obtained: the chosen model of HTR allowed us to form high-energy neutron spectrum in Th-blanket with significant fraction of 14 MeV neutrons; it was evaluated that threshold (n,2n) and (n,3n)-reactions are able to produce significant amounts of non-traditional target isotopes231Pa and232U; it was shown that accumulation of non-traditional target isotopes weakened substantially in depth of Th-blanket. So, it seems reasonable to seek for optimal thickness of Th-blanket and, thus, to find optimal loading of natural thorium.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Advanced Nuclear Fuel Cycle for the RF Using Actinides Breeding in Thorium Blankets of Fusion Neutron Source;Kulikov;Nuclear Energy and Technology,2016

2. On the Role of Fusion Neutron Source with Thorium Blanket in Forming the Nuclide Composition of the Nuclear Fuel Cycle of the Russian Federation;Shmelev;Physics of Atomic Nuclei,2016

3. Justification of vver-1000 safety when using fuel compositions doped by protactinium and neptunium;Baatar;Izv. Wysshikh Uchebnykh Zawedeniy, Yad. Energ.,2020

4. Proliferation-protected, ultra-high burn-up reactor fuel produced in the thorium blanket of a fusion neutron source;Kulikov,2020

5. Evolution of fuel isotope composition in blanket of hybrid thermonuclear reactor;Orlov,1979

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3