Author:
Kaur Karamjeet,Chakraborty Sudeshna,Kumar Gupta Manoj
Abstract
Abstract
In bioinformatics, sequence alignment is very important task to compare and find similarity between biological sequences. Smith Waterman algorithm is most widely used for alignment process but it has quadratic time complexity. This algorithm is using sequential approach so if the no. of biological sequences is increasing then it takes too much time to align sequences. In this paper, parallel approach of Smith Waterman algorithm is proposed and implemented according to the architecture of graphic processing unit using CUDA in which features of GPU is combined with CPU in such a way that alignment process is three times faster than sequential implementation of Smith Waterman algorithm and helps in accelerating the performance of sequence alignment using GPU. This paper describes the parallel implementation of sequence alignment using GPU and this intra-task parallelization strategy reduces the execution time. The results show significant runtime savings on GPU.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献