Machine Learning Approaches in Stock Price Prediction: A Systematic Review

Author:

Soni Payal,Tewari Yogya,Krishnan Deepa

Abstract

AbstractPrediction of stock prices is one of the most researched topics and gathers interest from academia and the industry alike. With the emergence of Artificial Intelligence, various algorithms have been employed in order to predict the equity market movement. The combined application of statistics and machine learning algorithms have been designed either for predicting the opening price of the stock the very next day or understanding the long term market in the future. This paper explores the different techniques that are used in the prediction of share prices from traditional machine learning and deep learning methods to neural networks and graph-based approaches. It draws a detailed analysis of the techniques employed in predicting the stock prices as well as explores the challenges entailed along with the future scope of work in the domain.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference26 articles.

1. Stock market analysis: A review and taxonomy of prediction techniques;Shah;International Journal of Financial Studies,2019

2. Stock market movement forecast: A Systematic Review;Bustos;Expert Systems with Applications,2020

3. An efficient system to predict and analyze stock data using Hadoop techniques;Jose;International Journal of Recent Technology and Engineering (IJRTE),2019

4. A survey of forex and stock price prediction using deep learning;Hu;Applied System Innovation,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3