Compressive Sensing Magnetic Resonance Image Reconstruction and Denoising using Convolutional Neural Network

Author:

Singh Ram,Kaur Lakhwinder

Abstract

Abstract Restoration of high-quality brain Magnetic Resonance Image (MRI) from the sparse under-sampled complex k-space signal is a widely studied ill-posed inverse transform problem. A deep learning-based data-adaptive and data-driven convolutional technique has been proposed for high-quality MRI recovery from its under-sampled complex domain k-space signal. The uniform subsampling process is very slow in phase-encoding to generate high-resolution images. The longer scan times degrade the perceptual image quality. Various factors contribute to image degradation during data acquisition such as the inception of body motion artifacts, the thermal energy effects of the body, and random noise artifacts due to voltage fluctuations. Keeping in view the patient’s critical condition and comfort, longer scan times are not preferred in practice. To reduce the image acquisition time, noise levels, and motion artifacts in the MR images, Compressive Sensing (CS) provides an accelerated way to reconstructs the high-quality MR image from very limited signal measurements acquired much below the Nyquist rate. However, such data acquisition strategies require advanced computer algorithms for the reconstruction of high-quality MRI from the undersampled MRI data. An improved CNN-based MRI reconstructed algorithm has been presented in this paper which shows better performance to reconstruct high-quality MRI than similar other MR image reconstruction algorithms. The performance of the proposed algorithm is measured by image quality checking tools such as normalized-MSE, PSNR, and SSIM.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference40 articles.

1. Certain topics in telegraph transmission theory;Nyquist;Trans. Am. Inst. Electr. Eng.,1928

2. Radial undersampling-based interpolation scheme for multislice CSMRI reconstruction techniques;Murad;Biomed Res. Int.,2022

3. MR image reconstruction from highly undersampled k-space data by dictionary learning;Ravishankar;IEEE Trans. Med. Imaging,2010

4. Sparse MRI: The application of compressed sensing for rapid MR imaging;Lustig;Magn. Reson. Med. An Off. J. Int. Soc. Magn. Reson. Med.,2007

5. New methods for MRI denoising based on sparseness and self-similarity;V Manjón;Med. Image Anal.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Domain transformation learning for MR image reconstruction from dual domain input;Computers in Biology and Medicine;2024-03

2. Improved MRI Reconstruction via Deep Learning-Driven Compressed Sensing and k-Space Theorem;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3