Numerical sensitivity analysis of the energy performance of building envelope with dynamic conditions

Author:

Veit Martin,Johra Hicham,Jensen Rasmus Lund,Rask Nikolaj,Roesgaard Simon

Abstract

Abstract The accurate energy performance assessment of building elements remains an active research topic. Studies have indicated that the thermal mass of building envelopes could influence heat losses in dynamic conditions and lead to significant difference in performance compared to steady-state conditions. This article aims to identify the relevance of using dynamic simulations instead of steady-state calculations for the energy performance assessment of building elements in Denmark. A numerical sensitivity analysis is performed on various parameters. The Monte-Carlo approach is used to perform numerous BSim simulations, which are then compared to standard steady-state calculations. The varied parameters include solar absorptance, ventilation in cavities, insulation material, insulation thickness, and orientation. Preliminary results indicate that dynamic conditions can significantly alter the wall heat losses, by up to 20% when compared to steady-state conditions. However, when aggregated, the differences average out to only 4% lower heat losses. When focusing on the thermal inertia of insulation materials, denser insulation materials only slightly delay the heat loss in the building element, but this effect is nullified over longer periods. The sensitivity analysis indicates that the most influential parameter is the solar absorptance, while the type of material is close in significance to the other parameters. The specific heat capacities and density of the insulation layer does not have a significant influence compared to its thermal conductivity. Thus, insulation materials with higher thermal mass do not seem to significantly improve the thermal performance of a building envelope.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference10 articles.

1. Directive 2010/31/EU of the European parliament and of the Council of 19 May 2010 on the energy performance of buildings;European Parliament and Council,2010

2. IEA. Building Envelopes;IEA,2021

3. Quantifying the domestic building fabric ‘performance gap.’;Johnston;Building Services Engineering Research and Technology.,2015

4. A Study of the Thermal Performance of Australian Housing;Page,2011

5. Quantifying Thermal Performance of the Building Envelope - Beyond Common Practice;Pallin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3