Novel functional materials capable of humidity regulation and thermal storage for building energy conservation

Author:

Hou Pu Ming,Qin Menghao

Abstract

Abstract Functional materials with large hygrothermal inertia can passively mitigate indoor temperature and humidity variations, thus improving indoor environmental quality and reducing energy demand for heating, ventilation, and air-conditioning (HVAC) systems. In this study, a novel functional phase-change humidity control material (PCHCM) was developed based on the integration of microencapsulated phase-change material (MicPCM) and novel moisture adsorbent: Metal-Organic Frameworks (MOFs). The novel MOF-based PCHCM is a dual-functional composite material. It can simultaneously uptake/release heat and humidity from indoor air and control the hygrothermal environment passively. The materials characterizations show that the new MOF-based PCHCM has better thermal and moisture buffering ability than most conventional building materials. The effect of the new material on building energy conservation was calculated by a newly developed HAMT-enthalpy model. The simulation results show that MOF-based PCHCM can effectively moderate the fluctuations of temperature and relative humidity and reduce building energy consumption in most climates worldwide. The maximum energy-saving potential could reach up to 35% in hot-dry climates. The paper will guide the application and further development of dual-functional PCHCM composites under different climates.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference22 articles.

1. A review on buildings energy information: Trends, end-uses, fuels and drivers;González-Torres;Energy Reports,2022

2. Synthesis and characteristics of hygroscopic phase change material: Composite microencapsulated phase change material (MPCM) and diatomite;Chen;Energy Build.,2015

3. Numerical analysis for the optimal location of a thin PCM layer in frame walls;Jin;Applied Thermal Engineering,2016

4. Recent progress on hygroscopic materials for indoor moisture buffering;Zhang;Journal of Physics: Conference Series,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3