Numerical test bench to evaluate the influence of heat gains on the estimation of Heat Transfer Coefficient under occupied conditions

Author:

Pacquaut A,Rouchier S,Jay A,Challansonnex A,Juricic S,Wurtz E

Abstract

Abstract The estimation of the HTC heat transfer coefficient in real occupancy conditions has a great operational advantage contrary to the measurement in unoccupied conditions, which requires specific measurement protocols. Nevertheless, it presents additional constraints because the gains due to weather conditions and occupancy are poorly controlled. The objective of this work is therefore to quantify the impact of these different gains. A numerical test bench is set up to study the impact of the solar and internal gains by varying different parameters, such as the typology of the building, the meteorological conditions, the scenarios of occupancy. These numerical tests allow to estimate the HTC of a building by calibrating a numerical model from a virtual dataset generated by a detailed model with known and controlled meteorological conditions and usage conditions. They make it possible to determine the share of solar heat gain and internal heat gain in the energy balance of the building and their impact on the estimation of the HTC according to the studied configurations.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3