Wind-driven rain load in Finland in present and future projected climates

Author:

Pakkala Toni A.,Lahdensivu Jukka

Abstract

Abstract The amount of wind-driven rain (WDR) has been shown to have a major effect on the different deterioration mechanisms of outdoor exposed structures. For example, in recent studies of Finnish existing concrete element buildings the amount of WDR has been shown to have strong correlation with the corrosion rate of reinforcements in carbonated concrete and the freeze-thaw damage of concrete. The latter can be related to all porous stone-based materials (e.g., bricks and mortars). In addition, the amount of WDR has a major effect on mould growth potential in different materials or structures sensitive to it. Thus, the effect of the amount of WDR in present climate has been studied comprehensively. In this study, the amount of WDR is calculated for a new 30-year period (1989-2018) presenting the present climate among with two future periods presenting 2050 and 2080 climates. In future climate projections, three different CMPI5 based scenarios are used: RCP2.6, RCP4.5 and RCP8.5. All calculations take into account the wind directions and they are made for four different locations presenting Finland: coastal area, southern Finland, inland and northern Finland (Lapland). Based on the results, the WDR load in the form of rain or sleet is increasing in all locations and from every direction regardless of the used scenario. The highest relative increase is in inland and Lapland, though, the load is still significantly higher in coastal and southern parts of Finland. With all the scenarios the WDR load is still focusing on southern directions, but it will be more evenly divided for other directions than in present climate. In addition, the WDR load is increasing during autumn and wintertime, i.e., during the periods when in the latitudes the drying conditions are weak because of the lack of solar radiation and the high-level relative humidity.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference23 articles.

1. The corrosion rate in reinforced concrete facades exposed to outdoor environment;Köliö;Mater Struct,2017

2. Freeze-thaw damage dependence on wind-driven rain of outdoor exposed concrete – a case study;Pakkala;Nord Concrete Res,2019

3. Moisture damage and high temperatures in buildings in changing climate – RAIL;Lahdensivu,2023

4. A review of wind-driven rain research in building science;Blocken;J Wind Eng Ind Aerod,2004

5. Fogars beständighet;Jerling;Byggforskningrådet Rapport,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3