To Shade or not to Shade (and how)? Annual heating energy balance and internal temperature in low energy houses in Wrocław, Poland.

Author:

Baborska-Narożny Magdalena,Bandurski Karol,Grudzińska Magdalena

Abstract

AbstractOne of the important areas of occupant–building fabric interaction with IEQ consequences is windows’ shading. The relevance of shading has been explored through modeling studies in the context of energy, daylighting and thermal comfort, typically aiming to inform the design stage. In owner occupied housing the architectural design sets the scene for subsequent residents’ decisions concerning windows treatment. Here, based on varied treatments for 20m2living room window observed during an in-depth building performance evaluation in same homes, dynamic modeling in TRNSYS is used to establish the related heating loads and internal temperatures. The results allow to rank five shading usage scenarios for three physical settings, namely lack of shading, external blind and internal curtain on lower half of the window, in terms of their overheating mitigation potential, based on simplified assumptions for heating, ventilation and shading practices. The modelling points towards severe overheating issue and crucial impact of shading usage patterns on its mitigation. Yearly modelled share of overheating hours (>26 °C) are almost double for unshaded scenario compared to the most effective shading strategy (25% and 13%). The simulation contributes to understanding of the field monitoring results where the unshaded living rooms experience more severe overheating, and the two shading settings in place are associated with comparable internal thermal conditions, respectively 22% vs. 5% and 6% of yearly share of overheating hours. The simplification of human-HVAC-building interaction model likely obfuscates solar heat gain control contribution to heating load.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3