Laser-Doppler Anemometry for detection of the velocity field in the ventilated, asymmetrically heated channel - a case study

Author:

Larsen O K,Zhang C,Melgaard S P,Nikolaisson I T,Liu L,Larsen T S

Abstract

Abstract The topic of double-skin façades (DSFs) is re-emerging in the research environment, with studies ranging from architectural design concepts to specific investigations of heat and mass transfer in a vertical channel. These studies reflect a lack of comprehension of the phenomena taking place within the DSF cavities. This work presents a case study, where the Laser-Doppler Anemometry principle, combined with video registration of smoke movement, is used to establish the velocity and flow patterns in an asymmetrically heated ventilated channel in a controlled environment. The authors of this work contribute to the research field by addressing the pros and cons of the Laser-Doppler Anemometry approach for the measurement of the vertical velocity component in a DSF and presenting an example of obtained experimental results for the validation of CFD models. The results of this work address the velocity distribution for the vertical 2D cross plane of the DSF cavity. The analysis of the measurement data includes an assessment of the stability of the flow and fluctuations throughout the measurement period.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference8 articles.

1. Evaluating the different boundary conditions to simulate airflow and heat transfer in Double-Skin Facade;Ahmadi,2021

2. Laboratory testbed and methods for flexible characterization of thermal and fluid dynamic behaviour of double skin facades;Jankovic;Build. Environ.,2022

3. Possibilities and challenges of different experimental techniques for airflow characterisation in the air cavities of façades;Giancola;Journal of Facade Design and Engineering,2018

4. An experimentally validated mathematical and CFD model of a supply air window: Forced and natural flow;Bhamjee;Energy Build.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3