Computer simulation of single burn transfers between low-Earth and halo orbits in the Sun-Earth system

Author:

Mezentsev Gleb,Aksenov Sergey

Abstract

Abstract Halo orbits of Sun-Earth system are utilized in space missions as they allow to maintain the spacecraft in an area that is stationary relative to Sun and Earth. The advantage of halo orbits is their periodicity and their form allowing the spacecraft to avoid the zones of solar interference and the Earth shadow. The transfer between a low-Earth orbit and a halo orbit around a libration point can be realized by a single-burn maneuver, which transfers the spacecraft to an orbit of stable manifold resulting in a halo orbit. An amplitude of halo orbit depends on the altitude of the parking low-Earth orbit at which the transfer maneuver is performed. This work is aimed to explore and systemize the single burn transfer options utilizing single and multiple Earth passing trajectories in the framework of the circular restricted three-body problem. The algorithms providing transfer options for the desired halo orbit and the parking orbit altitude are developed. The transfer trajectories for the Sun-Earth L 1 and L 2 halo orbits in a wide range of out-of-plane amplitudes were constructed and studied. The constructed trajectories were clustered based on the transfer time and the halo orbit amplitude.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3