Transformer fault diagnosis based on Improved Particle Swarm Optimization to support Vector Machine

Author:

Wu Yuhan,Sun Xianbo,Yang Pengfei,Wang Zhihao

Abstract

Abstract Power transformer fault diagnosis exerts a vital part in the safe operation of power system. The PSO-SVM based on transformer fault diagnosis still has some shortcomings, such as slow convergence speed and easy to fall into local optimization. This dissertation proposes a transformer diagnosis method based on Improve Particle Swarm Optimization to support Vector Machine (MPSO-SVM). Adding disturbance to Particle swarm optimization (PSO) to disturb the position of such precocious particles, so as to get rid of local optimum. The case analysis represents that the diagnostic accuracy of MPSO-SVM is higher than that of PSO-SVM and Generalized Regression Neural Network (GRNN), and MPSO-SVM can effectively promote the fault diagnosis performance of transformer.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference21 articles.

1. Fault diagnosis method of transformer based on convolutional neural network[J];Jinglong;Electrical Measurement & Instrumentation,2017

2. Transformer Fault Diagnosis Using Wavelet Neural Network Based on Elite-chaos ArtificialBee Colony Algorithm[J];Yimin;High Voltage Apparatus,2020

3. Study on Condition Assessment and Fault Diagnosis Approaches for Power Transformers[D];Hanbo,2012

4. Artificial Immune Network Classification Algorithm for Fault Diagnosis of Power Transformers[J];Hao;Automation of Electric Power Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3