Convex optimization and the smallest ball problem

Author:

Yang Junchi

Abstract

Abstract The Smallest Ball Problem is a famous problem in mathematics that was proposed by James Joseph Sylvester. In the past, many algorithms to solve this problem were founded but there was only a limited number of researches that focused on the rigorous mathematical proof of this problem. Thus, the goal of this essay is to provide a rigorous proof of the claim that the smallest enclosing ball must exist and it is unique. In this essay, the Smallest Ball Problem will be converted into a convex optimization problem and the result that the smallest enclosing ball exists and is unique can be proved by proving the optimal solution of this programming problem exists. The meaning of this research is to give a theoretically mathematical proof of the Smallest Ball Problem so that it can tell the algorithms to solve this problem can always work. Thus, it can also ensure the effectiveness of all the related algorithms.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference10 articles.

1. The minimum covering sphere problem;Elzinga;Management Science,1972

2. Linear-time algorithms for linear programming in R3 and related problems;Megiddo;SIAM Journal on Computing,1983

3. The smallest enclosing ball of balls: combinatorial structure and algorithms;Fischer;International journal of computational geometry& applications,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3