Thermo-fluid dynamic resonance in cancer cells

Author:

Giulia Grisolia,Grisolia Umberto

Abstract

Abstract In the third decade of XX century, Warburg pointed out that cancer cells follow a fermentative respiration process, as a consequence of a metabolic injury. In this paper, we consider this statement in the following way: any cell process requires energy, so, in the cell, a control of the energy conversion can represent a possible control of the cell processes. Engineering thermodynamics is the science that studies the conversion of energy into work. So, thermodynamics could represent a powerful approach to analyse of the energy conversion in the biosystems, for their control. Cells regulate their metabolisms by energy and mass (ions included) flows, and the heat flux occurs by the convective interaction with their environment. Here, we consider fluxes through the biosystems border, their shapes and the characteristic time of thermal interaction with the blood and water, in the cell environment. Moreover, just in relation to time, it is possible to consider the resonance phenomena. Resonance forces natural behaviours of systems, when a wave of a frequency, related to the characteristic time, income to a system. Here, we introduce the biothermodynamic characteristic frequency, which is the characteristic frequency of a biosystem, evaluated by a thermo-fluid dynamic approach, in order to control the fluxes through the cancer membrane, and to force it towards an optimal behaviour, by changing the concentrations of ions, inside and outside of the membrane itself. The result consists in a control of the cellular metabolic processes, and also of the energy available to cancer, for its growth. In this way, the cancer growth rate can be reduced.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference34 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.;Bray;CA: A Cancer Journal for Clinicians,2018

2. Cancer causes and treatments;Saini;International Journal of Pharmaceutical Sciences And Research,2020

3. State of cancer Research around the globe;Sitki-Copur;Oncology Journal,2019

4. The metabolism of tumors in the body Journal of General Physiology;Warburg,1927

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3