Prediction of the elastic behaviour of HDPE/SWCNTs nanocomposites with FEM approach

Author:

Tebeta R.T.,Fattahi A.M.,Ahmed N.A.

Abstract

Abstract Prediction of elastic behaviour of polymer-based nanocomposite using finite element method (FEM) has attracted the attention of many researchers in the past few years. In this study, ANSYS 19.2 software was used to predict the elastic modulus of high-density polyethylene (HDPE) reinforced with single-walled carbon nanotubes (SWCNTs) at different weight fractions. Three-dimensional (3-D) representative volume element (RVE) was created by FEM using ANSYS software to estimate the elastic modulus of HDPE based nanocomposite reinforced with SWCNTs nanoparticles at 0.2 wt%, 0.4 wt%, 0.6 wt%, 0.8 wt%, and 1 wt% weight fractions. To present the FEM model for predicting the elastic modulus of HDPE/SWCNT nanocomposite, the results from atomic modelling were extracted and used for properties of matrix and fibre interface. The interfacial region was used in the model to separate the conditions of load transfer between the HDPE matrix and SWCNT fibre. Two density fractions of HDPE/SWCNTs nanocomposite were also used in terms of two different densities for both HDPE and SWCNT to investigate their effect on the elastic modulus. The modelling results showed that the increase of weight fraction of single-walled carbon nanotubes (SWCNTs) results with the increase of relative elastic modulus of the nanocomposite. The results also showed that the elastic modulus of low-density fraction HDPE/SWCNTs nanocomposite improves more compared to one of the high-density fractions at the same SWCNTs weight fraction. Rule of the mixture was also used to predict the elastic behaviour of HDPE/SWCNT nanocomposite and the results were compared to those of the FEM model for validation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference26 articles.

1. Linking MD and FEM to predict the mechanical behaviour of fullerene reinforced nylon-12;Giannopoulos;Composites Part B: Engineering,2019

2. Tribological characterization of CNT/HDPE polymer nano-composites;Thakur;Int. J. Theor. Appl. Res. Mech. Eng.,2012

3. FEM modeling based on molecular results for PE/SWCNT nanocomposites;Fattahi;International Journal of Engineering & Technology www.sciencepubco.com/index.php/IJET,2018

4. Modeling of transversely isotropic properties of CNT-polymer composites using meso-scale FEM approach;Arora;Composites Part B: Engineering,2019

5. Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber;Shokrieh;Mechanics Research Communications,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3