Model assessment of a nanofiltration membrane for the removal metal ions from simulated wastewater

Author:

Agboola O.,Kolesnikov A.,Sadiku E.R.,Maree J.P.,Mbaya R.,Sanni S.E.

Abstract

Abstract This paper accords the likelihood of applying Donnan and Steric Partitioning Pore Model (DSPM) together with extended Nernst-Planck model to elucidate the capacity of charge and Donnan exclusion mechanisms in removing ions from simulated wastewater in Nano-Pro-3012 membrane filtration process. The extended Nernst-Planck model reports the transportation of cations across Nano-Pro-3012 with respect to electrical potential gradient, movement of solutes and pressure difference through the membrane. The working principle of these two equations is dependent on the adsorption of the charged surface, diffusion and convective transport. This principle was established with a software called Comsol multi-physic 4.3b to explain the capacity of charge and Donnan exclusion mechanism of Nano-Pro-3012. The extended Nernst-Planck model and the Darcy law model were applied to evaluate the physical interrelationship amidst NanoPro-3012 and ionic solutions with the aim of having a good understanding of the transport and rejection working operation of the ions. The principle of these equations was first used to envisage the capability of Nano-Pro-3012. The data obtained were validated with the laboratory data. There was an establishment that movement of solutes across the membrane bring about diffusion transport. The total flux in solution increases due to the working operation of the diffusion which in turns reduces the electrical potential, as a result, reduces the flux in the membrane. Ions smaller than pore sizes are rejected and the theoretical data is in conformity with the experimental data.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference40 articles.

1. Characterization and performance of nanofiltration membranes;Agboola;Environmental Chemistry Letters,2014a

2. Use of nanofiltration for concentration and demineralization in the diary industry: model for mass transport;Bidhendi;Pakistan Journal of Biological Sciences,2006

3. Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions;Garcia-Aleman;Journal of Membrane Science,2004

4. Composite reverse osmosis and nanofiltration membranes;Petersen;Journal of Membrane Science,1993

5. Mathematical modeling of nanofiltration-based deionization from aqueous solutions;Zerafat;International Journal of Nanoscience and Nanotechnology,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3