A Single Stroke Cylinder Rapid Compression Machine for Chemical Kinetic Study at Elevated Pressure and Temperatures

Author:

Nyong Oku,Ebieto Celestine,Woolley Robert,Blakey Simon

Abstract

Abstract The fabrication of a rapid compression machine (RCM) is in its early phase of design. The machine is designed to enhance the study of ignition delay and validation of detailed kinetics models of fuels. The machine compresses fuel/air mixtures isentropically within 25 to 52 ms with a varying stroke. The combustion chamber design is not fixed and can be adjusted through the threaded shaft lock and within chamber slots. The originality of the facility is the inclusion of a pneumatic piston release mechanism (PPRM), which is pneumatically operated. The current test facility has been characterised by conducting a nonreactive and reactive experiment, the result showed that an obtainable compressed pressure of 21 bar and end gas temperature of approximately 1000 K was achievable within the present facility. The fidelity of the facility was performed with a non-reactive experiment, which experimental pressure profile was seen to follow each other closely showing that the data are highly repeatable within the test condition, the result was free from any form of rebound or disturbance, which would have adversely distort the result. The experiment data was simulated implementing the effective volume approach and was seen to perfectly match with the experiment at both stages of compression. The reactive experiment was demonstrated with heptane/air mixture at stoichiometric condition, TC = 625 ⩽ 689 K. The results show that the experimental pressure traces overlay each other thus signifying a repeatable pressure trace and this demonstrates that the Shef-RCM is operable and ready at its first stage of design for studying the ignition delay time of liquid fuels operating within an engine like conditions and for validating chemical kinetics models.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference36 articles.

1. The Ignition Temperatures Of Hydrogen-Oxygen Mixtures;Falk;Journal of the American Chemical Society,1906

2. An opposed piston rapid compression machine for preflame reaction studies;Affleck;Proceedings of the Institution of Mechanical Engineers,1968

3. Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature;Weber;Combustion and Flame,2011

4. A rapid compression machine for chemical kinetics studies at elevated pressures and temperatures;Mittal;Combustion Science and Technology,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3