Identification of models using analog sensitivity functions

Author:

Voronov V S,Rouban A I

Abstract

Abstract The paper proposes an algorithm for retrospective and adaptive estimation of sensitivity functions in relation to the problem of parametric identification of a dynamic model of an object. The proposed approach is based on the combined use of local and global sensitivity analysis methods. The algorithm is based on the use of analogs of sensitivity functions. They are not sensitivity functions in strict sense in the case of large parameter deviations. Analogs of sensitivity functions become their estimates with reduction deviations. The procedure for compressing the region of variation is based on the approach used in the selective coordinate averaging algorithm. The results are used for evaluating the sensitivity functions of the Monod model, and for parametric identification of the simple distillation process model using the adaptive least squares method.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Trends in sensitivity analysis practice in the last decade;Ferretti;Sci. Total Environ,2016

2. Certain trends in uncertainty and sensitivity analysis: An overview of software tools and techniques;Douglas-Smith;Environ Model Softw,2020

3. Sensitivity analysis of complex kinetic systems. Tools and applications;Turányi;Journal of Mathematical Chemistry,1990

4. Practical aspects of sensitivity function approximation for dynamic models;De Pauw;Mathematical and Computer Modelling of Dynamical Systems,2006

5. Global sensitivity indices for the investigation of nonlinear mathematical models;Sobol;Mathematical Models and Computer Simulations,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3